Sample Question Paper Engineering Mathematics-3

1. If
$$f(t) = \left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^2$$
, find L[f(t)] and hence find L{ e^{2t} f(t)}

2. Find
$$L^{-1}\left\{\frac{1}{s(s^2+4)}\right\}$$

- 3. Obtain half-range cosine series for f(x) = x(2-x) in 0 < x < 2
- 4. Find moment generating function of the following distribution. Hence find mean and variance.

X	1		4	5	
P(X)	0.4	0	0.1	2	

- 5. A Find the orthogonal trajectories of the family of curves 6 $e^{-x}[x\sin y y\cos y] = c$
- 6. Find $L\left\{t\left(\frac{\cos t}{e^t}\right)^2\right\}$
- 7. Find the Fourier series expansion for f(x) = 2, -2 < x < 0. Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$
- 8. A Find $L^{-1}\left\{\log\left(1-\frac{1}{s^2}\right)\right\}$
- 9. Find the analytic function f(z) = u + iv where $u + v = \frac{\sin 2x}{\cosh 2y \cos 2x}$, using Milne-Thompson's Method.
- 10. Fit a parabola $x = a + by + cy^2$ for the following data:

X: ŷ	1	2	3	4	5	
Y: ^	10	ャ	12	3	15	

- 11. The first 4 moments of a distribution about origin of the random variable X are -1.5, 17, -30 and 108. Compute Mean, variance, μ_3 and μ_4 .
- 12. Consider the equations of regression lines 5x y = 22 and 64x 45y = 24. Find \bar{x}, \bar{y} and correlation coefficientry.
- 13. Find $L^{-1}\left\{\frac{(s+3)^2}{(s^2+6s+13)^2}\right\}$
- 14. Find the Laplace transform of $\cos^3 t \cos 5t$.
- 15. Find Spearman's rank correlation coefficient for the data below:

X:	32	55	49	60	43	37	43	49	10	20
Y:	40	30	70	20	30	50	72	60	45	25

- 16. Obtain Fourier Series for $f(x) = \frac{1}{2}(\pi x)$ in $(0,2\pi)$. Hence, deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$
- 17. If f(x) is probability density function of a continuous random variable X, find k, mean and variance.

$$f(x) = \begin{cases} kx^2, 0 \le x \le 1\\ (2-x)^2, 1 \le x \le 2 \end{cases}$$

- 18. Check if there exists an analytic function whose real part is $u = \sin x + 3x^2 y^2 + 5y + 4$. Justify your answer.
- 19. Evaluate the following integral by using Laplace transforms

$$\int_0^\infty e^{-2t} \left[\int_0^t \left(\frac{e^{3u} \sin^2 2u}{u} \right) du \right] dt$$